
Analysis and Implementation of a High-Order
Reconstruction Algorithm for an
Unstructured Finite Volume

Flow Solver

Shane Edmond Sawyer

University of Tennessee at Chattanooga

May 29, 2012

Shane Edmond Sawyer (UTC) High-Order Reconstruction May 29, 2012 1 / 1



Outline

Introduction and Background

Research Goals

Brief Solver Discussion

Reconstruction Algorithm

MMS Results

Steady Results

Unsteady Results

Conclusion

Shane Edmond Sawyer (UTC) High-Order Reconstruction May 29, 2012 2 / 1



Introduction and Background

High-Order Unstructured Finite Volume Methods

Structured Methods:

ENO - Harten, Enquist, Osher, and Chakravarthy.
WENO - Liu, Osher, and Chan.

Barth and Frederickson: Seminal Paper for Higher Order on
Unstructured Grids.

ENO Ideas Introduced by Harten and Chakravarthy and Abgrall.

Ollivier-Gooch: Examined Method.
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Research Goals

High-Order Solutions for Equations of Fluid Dynamics.

Extendable to Tenasi:

Parallelizable
Support for Cell/Vertex-Centered Formulation
Element Neutral
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Flow Solver

Solves the 2D Euler Equations

Vertex-Centered, Median Dual

Roe Scheme

CVBCs

Spatial Accuracies - 1st through 4th

Temporal Accuracies:

Explicit - 1st-Order Forward Euler
Implicit - 1st-Order Backward Euler, 2nd -Order Finite Diff. App.

Approximate Flux Linearization

Symmetric Gauss-Seidel Linear Solver
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Reconstruction Algorithm

Three Criteria for High-Order
Reconstruction (from Barth
and Frederickson)

Conservation in the Mean

k-Exact Reconstruction

Compact Support
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Reconstruction Algorithm
Implementation

Final Form:

1

Vj

∫
Vj

Ri (~x − ~xi )dV = u
∣∣
~xi

+
∂u

∂x

∣∣∣∣
~xi

(xj + (xj − xi ))

+
∂u

∂y

∣∣∣∣
~xi

(yj + (yj − yi )) +
∂2u

∂x2

∣∣∣∣
~xi

(
1

2
(x2j + 2xj(xj − xi ) + (xj − xi )

2)

)
+
∂2u

∂y2

∣∣∣∣
~xi

(
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2
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2)

)
+
∂2u
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∣∣∣∣
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(
xyj + xj(yj − yi ) + yj(xj − xi ) + (xj − xi )(yj − yi )

)
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Reconstruction Algorithm
Implementation, continued

Least Squares System:

1 x y x2 y2 xy

wi1 wi1x̂i1 wi1ŷi1 wi1x̂2i1 wi1ŷ2
i1 wi1x̂yi1

wi2 wi2x̂i2 wi2ŷi2 wi2x̂2i2 wi2ŷ2
i2 wi2x̂yi2

wi3 wi3x̂i3 wi3ŷi3 wi3x̂2i3 wi3ŷ2
i3 wi3x̂yi3

...
...
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...

...
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win winx̂in winŷin winx̂2in winŷ2
in winx̂yin


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
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
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Reconstruction Algorithm
Implementation, continued

x̂aybij =
b∑

d=0

a∑
c=0

(
b!

d!(b − d)!

a!

c!(a− c)!

(xj − xi )
c(yj − yi )

dxa−cyb−d j

)
Geometric Weighting Parameter:

wij =
1

|~xj − ~xi |p
, p ∈ {0, 1, 2}
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Reconstruction Algorithm
Implementation, continued

Three Notes:

1 Mean Constraint is Eliminated

2 ui is Replaced with Actual Flow Variable

3 Reconstruct Either Conserved or Primitive Variables
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Reconstruction Algorithm
Solution Reconstruction

2nd : ~Qinterface = ~Qi +∇~Qi ·~r

3rd : ~Qinterface = ~Qi +∇~Qi ·~r + 1
2~r

T · ∇2~Qi ·~r

4th : ~Qinterface = ~Qi +∇~Qi ·~r + 1
2~r

T · ∇2~Qi ·~r + 1
6(~r · (~r · (~r · ∇3~Qi )))

~r = ~xinterface − ~xi
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Reconstruction Algorithm
Solution Reconstruction, continued

Important Details:

2nd -Order - Midpoint Rule, CV average value for ~Qi

Higher Orders - Need More Accurate Integration, Must Use Node
Value in Reconstruction (See Harten and Chakravarthy)
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Reconstruction Algorithm
High-Order Flux Integration

Three Point Gaussian Quadrature

t Weight

0 8/9

±
√

3/5 5/9

Parameterization - ~x(t) =
1

2
(~xa + ~xb) +

1

2
(~xb − ~xa) t
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Reconstruction Algorithm
High-Order Flux Integration, continued

Quadrature Node Locations
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Reconstruction Algorithm
Curved Boundaries

Constant Radius: Based on Angle, θ(t) =
1

2
(θa + θb) +

1

2
(θb − θa) t
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Reconstruction Algorithm
Smooth Function Test

f1(x , y) = x2 + y2 + xy + x + y
f2(x , y) = 3x3 + 5xy2

f3(x , y) = sin(πx)cos(πy)

f4(x , y) = e−r
2
, r2 =

(
x − 1

2

)2
+
(
y − 1

2

)2
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Reconstruction Algorithm
Smooth Function Test, continued

Test Procedure:

1 Initialize CV Averages - Divergence, Triangle Integration

2 Solve Least Squares - p = 0

3 Track Maximum Error Between Exact and Reconstruction
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Reconstruction Algorithm
Smooth Function Test, continued

Quadrature Nodes on a Constituent Triangle
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Reconstruction Algorithm
Smooth Function Test, Function 3 Results
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Reconstruction Algorithm
Smooth Function Test, Function 4 Results
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Reconstruction Algorithm
Solution Monotonicity

Original Reconstruction:

uG = u(~xi ) + S(~xG − ~xi ) + H(~xG − ~xi )

With Slope Limiter:

uG = u(~xi ) + φi (S(~xG − ~xi ) + H(~xG − ~xi )), φ ∈ [0, 1]

Implemented Limiters:

1 Barth and Jespersen

2 Venkatakrishnan

3 Nejat and Ollivier-Gooch

4 Michalak and Ollivier-Gooch
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Reconstruction Algorithm
Solution Monotonicity, continued

1 Barth and Jespersen

Find largest admissible φ; Strictly monotone

2 Venkatakrishnan

Differentiable; Monotonicity not strictly enforced

3 Nejat and Ollivier-Gooch

Previous limiters too diffusive; Add separate limiter for H.O.T.

4 Michalak and Ollivier-Gooch

Venkatakrishnan’s min function not sufficient
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Method of Manufactured Solutions

Add a Source Term:

∂

∂t

∫
CV

~Q dV +

∮
CS

~F · n̂ d~A = S(x , y)

Flux of the Manufactured Solution:

S(x , y) =

∮
CSi

~F (~QE ) · n̂ d ~Ai

Modify the Right Hand Side;[
Vi

4t
I +

∂<
∂Q

m]
4Q = −<(Q

m
) + <(~QE )
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Method of Manufactured Solutions
Continued

Exact Solution:
ρ = 1 + 1

4sin(πx)sin(πy)

u = 1
4 + 1

4sin(πx)cos(2πy)

v = 1
4 + 1

4cos(2πx)sin(πy)

P = 1
γ + 1

20cos(2πx)cos(2πy)

Evaluate as Area Integral Rather Than Contour
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Method of Manufactured Solutions
Linear Boundaries Results

Use Same Grids From Smooth Function Verification
Test:

2nd -Order

Pseudo 3rd -Order (Quadratic Extrapolation)

3rd -Order

4th-Order
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Method of Manufactured Solutions
Linear Boundaries Results, Density Error from Aligned Triangles, L1
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Method of Manufactured Solutions
Linear Boundaries Results, Total Energy Error from Quadrilateral, L1
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Method of Manufactured Solutions
Curved Boundaries Results

Annular Geometry with rinner = 2 and router = 3

Test Same Methods
Curved Boundary ⇒ Triangles with One Curved Side
Evaluate Area Integrals with Isoparametric Mapping (Quadratic)
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Method of Manufactured Solutions
Curved Boundaries Results, Density Error
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Method of Manufactured Solutions
Curved Boundaries Results, Convergence with Midpoint Rule
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Steady State Solutions

Supersonic Flow in an Annulus

Subsonic Flow Over a Circular Cylinder

Flow Over the NACA 0012 Airfoil
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Steady State Solutions
Supersonic Annulus

Analytical Solution: ρi = 1, Mi = 2, Ri = 2

ρ = ρi

(
1 + γ−1

2 M2
i

(
1− R2

i
r2

)) 1
γ−1

Ui = Miρ
γ−1
2

i U = UiRi
r

u = yU
r v = −xU

r

P = ργ

γ

IC: u, v = 0 and ρ = 1
5
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Steady State Solutions
Supersonic Annulus, Exact Solution
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Steady State Solutions
Supersonic Annulus, continued
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Steady State Solutions
Supersonic Annulus, continued
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Steady State Solutions
Supersonic Annulus, continued
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High-Order Methods with Linear Boundaries

Shane Edmond Sawyer (UTC) High-Order Reconstruction May 29, 2012 36 / 1



Steady State Solutions
Supersonic Annulus, Error in Density from Aligned Triangles (Coarsest Grid)
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Steady State Solutions
Supersonic Annulus, Timing Results

How Can Efficiency Be Measured?

1 Grids with Similar Error

2 Compare Time

Order Grid Index NCV Iterations (Total: 1st , 2nd , 3rd , 4th)

2nd 3 25600 340: 125,215,0,0
3rd 1 1700 275: 75,50,150,0
4th 0 420 300: 100,50,50,100

20 SGS Iterations (Maximum)

CFL: 1⇒ 400, 200 Iterations
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Steady State Solutions
Supersonic Annulus, Timing Results continued

2nd -order scheme Total time = 127.220 s*, NCV = 25600

3rd -order scheme Total time = 11.3264 s*, NCV = 1700

4th-order scheme Total time = 4.32762 s*, NCV = 420

* Executed on an Intel R© Core
TM

i5 750.

Shane Edmond Sawyer (UTC) High-Order Reconstruction May 29, 2012 39 / 1



Steady State Solutions
Supersonic Annulus, Timing Results continued
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Steady State Solutions
Supersonic Annulus, Error in Density On the Compared Grids
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Steady State Solutions
Subsonic Circular Cylinder

Freestream Conditions: U∞ = M∞ = 0.3

Grid Details:

Grid Index Boundary Points Total Points Number of Triangles

0 48 1488 2880
1 100 4600 9000
2 200 14200 28000
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Steady State Solutions
Subsonic Circular Cylinder, Grid 0 Pressure Contours
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Steady State Solutions
Subsonic Circular Cylinder, Grid 1 Pressure Contours
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Steady State Solutions
Subsonic Circular Cylinder, Grid 2 Pressure Contours

Shane Edmond Sawyer (UTC) High-Order Reconstruction May 29, 2012 45 / 1



Steady State Solutions
Subsonic Circular Cylinder, Grid 2 Pressure Contours (Detail)
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Steady State Solutions
Subsonic Circular Cylinder, CP Distribution

Potential Solution: CP,i = 1− 4sin2θ

Compressible Correction - Prandtl-Glauert: CP =
CP,i√

1−M2
∞
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Steady State Solutions
Subsonic Circular Cylinder, CP Distribution for Grid 0
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Steady State Solutions
Subsonic Circular Cylinder, CP Distribution for Grid 1
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Steady State Solutions
Subsonic Circular Cylinder, CP Distribution for Grid 2
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Steady State Solutions
Subsonic Circular Cylinder, CP Distribution for Grid 2 Detail
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Steady State Solutions
Subsonic Circular Cylinder, Hybrid Scheme

Second-Order Schemes Capture Front Stagnation Region Well
Higher Order Schemes Capture Rear Stagnation Region Better
Mix Schemes:

x < 0 ⇒ 2nd -Order

x ≥ 0 ⇒ 4th-Order
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Steady State Solutions
Subsonic Circular Cylinder, Grid 0 Pressure Contours with Hybrid Scheme

Shane Edmond Sawyer (UTC) High-Order Reconstruction May 29, 2012 53 / 1



Steady State Solutions
Subsonic Circular Cylinder, Grid 1 Pressure Contours with Hybrid Scheme
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Steady State Solutions
Subsonic Circular Cylinder, Grid 2 Pressure Contours with Hybrid Scheme
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Steady State Solutions
Subsonic Circular Cylinder, CP Distribution for Grid 2 with Hybrid Scheme
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Steady State Solutions
Subsonic Circular Cylinder, CP Distribution for Grid 2 Detail with Hybrid Scheme
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Steady State Solutions
NACA 0012 Airfoil

Grid Details:

Grid Index Number of nodes Number of nodes on upper/lower surface

0 1325 125
1 3275 150
2 9188 200
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Steady State Solutions
NACA 0012 Airfoil, Boundary Quadrature Nodes

Parameterization of NACA 0012 Equation

Distributed by Arc Length

Newton’s Method to Solve for Position
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.3 and α = 0

Compare Performance of Methods

Entropy Should be Conserved

P

ργ
= Constant
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.3 and α = 0, Visual Error
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.63 and α = 2, Visual Error
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.63 and α = 2, CP Distribution for Grid 0
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.8 and α = 1.25

Only Consider Grid 2
Transonic ⇒ Opportunity for Limiters

2nd - and Pseudo 3rd -Order : Venkatakrishnan Limiter

3rd - and 4th-Order : Limiter from Michalak and Ollivier-Gooch

K = 1.0
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.8 and α = 1.25, Residual Plot
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.8 and α = 1.25, Pressure Contours
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Steady State Solutions
NACA 0012 Airfoil: M∞ = 0.8 and α = 1.25, CP Distribution
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Unsteady Solutions
Vortex Convection

M∞ = 0.5, Add an Isentropic Vortex
Grids Span [0,−5]× [150, 5], ∆t = 0.0125, 5000 Iterations Applied

Grid Index Points in y Points in x Total Points ∆x

0 51 751 38301 0.2
1 61 901 54961 0.1667
2 71 1051 74621 0.1429
3 81 1201 97281 0.125

* 41 601 24641 0.25
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Unsteady Solutions
Vortex Convection, Convergence
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Unsteady Solutions
Vortex Convection, Density Error Contours
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Unsteady Solutions
Vortex Convection, Total Energy Error Contours
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Unsteady Solutions
Vortex Convection, Timing Results

Order, Grid ρ ρu ρv E

2nd , 81 2.56e-04 6.07e-04 4.82e-04 6.61e-04
pseudo 3rd , 61 2.62e-04 5.45e-04 4.73e-04 6.84e-04
3rd , 61 3.20e-04 5.44e-04 4.70e-04 8.51e-04
4th, 41 2.05e-04 3.45e-04 3.32e-04 4.70e-04

2nd -order scheme, 81 Total time = 15.1 hrs*

Pseudo 3rd -order scheme, 61 Total time = 8.7 hrs*

3rd -order scheme, 61 Total time = 13.5 hrs*

4th-order scheme, 41 Total time = 7.7 hrs*

* Executed on an Intel R© Core
TM

i5 750.
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Unsteady Solutions
Vortex Shedding Over a Wedge
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Unsteady Solutions
Vortex Shedding Over a Wedge, continued

Grid: 41217 Points, 82211 Triangles

M∞ = 0.2

800 1st-Order Iterations (Steady)

Restart with Appropriate Order (Unsteady, ∆t = 0.05)

Run Until Iteration 20000
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Unsteady Solutions
Vortex Shedding Over a Wedge, Pressure Contours
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Unsteady Solutions
Vortex Shedding Over a Wedge, Timing Results

2nd -order scheme Total time = 3.5 days*

Pseudo 3rd -order scheme Total time = 4.3 days*

3rd -order scheme Total time = 8.5 days*

4th-order scheme Total time = 15.9 days*

* Executed on an Intel R© Xeon R© X7560.

2nd pseudo 3rd 3rd 4th

Newton Iterations 20 26 30 40
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Computational Expense

Average time per node over iterations (time steps and Newton):

2nd -Order : 19µs

Pseudo 3rd -Order : 18µs

3rd -Order : 31µs

4th-Order : 43µs
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Conclusion
Summary

Solver with High-Order Spatial Accuracy

Accuracy Demonstrated with MMS

Accuracy Demonstrated with Grid Convergence

Proper Curved Boundaries

Slope Limiters

Method Works for Unsteady Problems
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Conclusion
Future Work

Add Viscous Terms

Parallelization

Extend to Tenasi (Some of this is done.)
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