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Overview of talk

1 Introduction What is high performance computing

2 Programming Models Threads, Processes, Distributed/Shared

Memory

3 Hardware Multicore processors, memory hierarchies, accelerators

4 Libraries Existing libraries that simplify development and deliver

performance

5 Optimization When to optimize, available tools

6 Taking the Next Step Where to find additional resources
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5 Optimization
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Defining High Performance Computing

High performance computing is ubiquitous.

Titan supercomputer at ORNL.
Image courtesy of Oak Ridge

National Laboratory.

Broadly defined: it is a
collection of resources that
offer more performance than
desktops.

Computational tasks that
are too large
(memory/operations) for a
single resource.
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Defining High Performance Computing

Clusters vs. Supercomputers

Clusters
Collection of resources (servers, desktops, ...)
Interconnect (ethernet, InfiniBand, ...)
Commodity Linux distributions

Supercomputer
Collection of specialized resources. Typically higher density.
High-speed interconnects. Higher performance networking
topologies.
Customized compilers, tools, and OS.
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Defining High Performance Computing

Clusters vs. Supercomputers

Network diagram from ACCRE,
Vanderbilt University.

Cray’s Dragonfly topology.
Image credit: Timothy
Prickett Morgan , The

Register.
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Nomenclature

Nomenclature

Threads A single stream of execution.

Processes Complete program with address space, code, I/O
handles, ...

Shared Memory Single pool of memory shared by resources.
Explicit protection.

Distributed Memory Memory is spread across resources.
Explicit exchange of information.
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Models

Models

1 OpenMP An API, compiler directives, and runtime engine for
shared memory, multithreading.

2 MPI A library and runtime for distributed memory parallel
programming. Explicit message exchange.

3 Hybrid Use OpenMP on node and MPI between nodes for
communication.

4 Heterogeneous Conventional resources with accelerators
(GPU, Xeon Phi, FPGA, ...)
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Examples

OpenMP Example

Dot product of two vectors.

1 #include <omp.h>

2 int main(void)

3 {

4 double *a, *b, dotp;

5 int i;

6 // ... initialize and allocate a and b

7
8
9 #pragma omp parallel for shared(a,b,N) \

10 private(i) reduction (+ : dotp)

11 for (i=0; i < N; ++i)

12 dotp += a[i]*b[i];

13
14
15 return 0;

16 }
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Examples

MPI Example

Dot product of two vectors.

1 #include <mpi.h>

2 int main(int argc , char* argv [])

3 {

4 double *a, *b, dotp , temp;

5 int i;

6 // initialize MPI

7 MPI_Init (&argc ,&argv);

8 MPI_Comm_rank(MPI_COMM_WORLD ,& my_rank );

9 MPI_Comm_size(MPI_COMM_WORLD ,&np);

10
11 // ... initialize and allocate a and b, determine start and end

12 dotp = temp = 0.;

13 for ( i=START; i < END; ++i )

14 temp += a[i] * b[i];

15
16 MPI_Reduce (&temp ,&dotp ,1,MPI_DOUBLE ,MPI_SUM ,root ,MPI_COMM_WORLD );

17
18 MPI_Finalize ();

19 return 0;

20 }
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Hardware
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CPUs

Multicore Processors are everywhere.

Quad-core AMD Opteron processor.
Image credit: American Micro

Devices, Inc.

”The Free Lunch is Over” –
Herb Sutter.

Proliferation of multicore
processors.

Algorithms pushed towards
parallelization.
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CPUs

Granularity

Socket The physical packaging of cores with cache and
interconnect.

Core A complete processing element.

SIMD Registers and execution units that allow one operation
performed on multiple data in one tick.
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Memory

NUMA and the Latency Hierarchy

NUMA – Non-Uniform Memory Access

Image credit: Jon Stokes, ArsTechnica.
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Memory

NUMA and the Latency Hierarchy

Memory Hierarchy

1 Registers – 1 cycle

2 Cache – L1 ( 4 cycles) → L2 ( 10 cycles) → L3 ( 40-75
cycles)

3 RAM – 100ns

4 Disk – 2ms
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Memory

Data Locality

Goal: Maintain high FP intensity

Algorithms: Reuse data in cache

Reflected in many modern linear algebra packages

Example: create a tiling of matrices for multiplication.
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Memory

Matrix Tiling

Image credit: Nvidia.
Image credit: Nvidia.
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Libraries
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Libraries for Computational Mathematics

Parallel programming is challenging – changing technology,
effort spent on low-level details

Using libraries allows quicker development time, less
debugging, abstracts communication details, lets application
writers focus on their problem

Plethora of excellent libraries for computational mathematics:
linear algebra, nonlinear solvers, graph partitioning, PDEs, ...
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Linear Algebra

Modern libraries take advantage of hardware advances:
ATLAS, Intel Math Kernel Library (MKL), PLASMA (ICL),
blaze-lib

Libraries for Heterogenous systems:

Intel Xeon Phi: MKL (with automatic offload support),
MAGMA-MIC (ICL)
Nvidia GPU: CUBLAS, MAGMA (ICL)

Parallel libraries: PETSc, Trilinos

PDEs: deal.II, FEniCS, libMesh
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blaze-lib

blaze-lib: CG Example

100 const size_t NN( N*N );
101
102 blaze:: CompressedMatrix <double ,rowMajor > A( NN, NN );
103 blaze:: DynamicVector <double ,columnVector > x( NN, 1.0 ), b( NN, 0.0 ),
104 r( NN ), p( NN ), Ap( NN );
105 double alpha , beta , delta;
106
107 // ... Initializing the sparse matrix A
108
109 // Performing the CG algorithm
110 r = b - A * x;
111 p = r;
112 delta = (r,r);
113
114 for( size_t iteration =0UL; iteration <iterations; ++ iteration )
115 {
116 Ap = A * p;
117 alpha = delta / (p,Ap);
118 x += alpha * p;
119 r -= alpha * Ap;
120 beta = (r,r);
121 if( std::sqrt( beta ) < 1E-8 ) break;
122 p = r + ( beta / delta ) * p;
123 delta = beta;
124 }

23 / 38



Introduction Programming Models Hardware Libraries Optimization Additional Resources

PETSc

PETSc

Library for large-scale scientific computation

Large collection of parallel functions for linear solvers,
nonlinear solvers, ODE integrators

Abstracts communication details from user; focus on solving
the problem

Well documented; large collection of online examples/tutorials
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PETSc

PETSc: Parallel Linear Solve Example

1 #include <petscksp.h>
2 PETSC_EXTERN PetscErrorCode PCCreate_Jacobi(PC);
3
4 int main(int argc ,char **args)
5 {
6 Vec x,b,u; /* approx solution , RHS , exact solution */
7 Mat A; /* linear system matrix */
8 KSP ksp; /* linear solver context */
9 PetscReal norm; /* norm of solution error */

10 PetscInt i,j,Ii,J,Istart ,Iend ,m = 8,n = 7,its;
11 PetscScalar v,one = 1.0, neg_one = -1.0;
12 PC pc; /* preconditioner context */
13
14 PetscInitialize (&argc ,&args ,(char*)0,help);
15 PetscOptionsGetInt(NULL ,"-m" ,&m,NULL);
16 PetscOptionsGetInt(NULL ,"-n" ,&n,NULL);
17
18 MatCreate(PETSC_COMM_WORLD ,&A);
19 MatSetSizes(A,PETSC_DECIDE ,PETSC_DECIDE ,m*n,m*n);
20 MatSetFromOptions(A);
21 MatSetUp(A);
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PETSc

PETSc: Parallel Linear Solve Example

22 MatGetOwnershipRange(A,&Istart ,&Iend);
23
24 for (Ii=Istart; Ii<Iend; Ii++) {
25 v = -1.0; i = Ii/n; j = Ii - i*n;
26 if (i>0) {J = Ii - n; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES );}
27 if (i<m-1) {J = Ii + n; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES );}
28 if (j>0) {J = Ii - 1; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES );}
29 if (j<n-1) {J = Ii + 1; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES );}
30 v = 4.0; MatSetValues(A,1,&Ii ,1,&Ii ,&v,INSERT_VALUES );
31 }
32
33 MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY );
34 MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY );
35
36 VecCreate(PETSC_COMM_WORLD ,&u);
37 VecSetSizes(u,PETSC_DECIDE ,m*n);
38 VecSetFromOptions(u);
39 VecDuplicate(u,&b);
40 VecDuplicate(b,&x);
41 VecSet(u,one);
42 MatMult(A,u,b);
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PETSc

PETSc: Parallel Linear Solve Example

43 KSPCreate(PETSC_COMM_WORLD ,&ksp);
44 KSPSetOperators(ksp ,A,A);
45 PCRegister("ourjacobi",PCCreate_Jacobi );
46 KSPGetPC(ksp ,&pc);
47 PCSetType(pc,"ourjacobi");
48 KSPSetFromOptions(ksp);
49
50 KSPSolve(ksp ,b,x);
51
52 VecAXPY(x,neg_one ,u);
53 VecNorm(x,NORM_2 ,&norm);
54 KSPGetIterationNumber(ksp ,&its);
55 PetscPrintf(PETSC_COMM_WORLD ,"Norm of error %g iterations %D\n",
56 (double)norm ,its);
57
58 KSPDestroy (&ksp);
59 VecDestroy (&u); VecDestroy (&x);
60 VecDestroy (&b); MatDestroy (&A);
61 PetscFinalize ();
62 return 0;
63 }
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deal.II

deal.II

Image Credit: Dr. Wolfgang
Bangerth.

Modern C++ based library for
building applications to solve
PDEs with finite elements

Support for arbitrary degree,
adaptive refinement, 1/2/3
spatial dimensions

Interfaces to a variety of
libraries: ARPACK, PETSc,
Trilinos, SLEPc, MPI, p4est,
METIS, ...

Well documented code; greater
than 50 tutorial programs;
online collection of video
lectures
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Optimization
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Optimization

Getting the most performance out of available hardware;
being able to scale efficiently to larger resources

Libraries are typically optimized; application code can be the
bottleneck

“Premature optimization is the root of all evil” – Donald
Knuth; measure code performance and look for critical
sections

Several available tools to provide metrics on performance
including CPU, cache utilization, memory bandwidth,
communication, ...

30 / 38



Introduction Programming Models Hardware Libraries Optimization Additional Resources

Intel VTune

Intel VTune

Image Credit: Intel.

Provides CPU metrics, cache
misses, thread synchronization
information, ...

Identifies which functions use
the most CPU time

31 / 38



Introduction Programming Models Hardware Libraries Optimization Additional Resources

ITAC

Intel Trace Analyzer and Collector

Image Credit: Intel.

Collects and reports on MPI
communication patterns

Aids in finding bottlenecks and
load balancing issues
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TAU

Tuning and Analysis Utilities

Image Credit: PRACE.

Open source resource providing
similar information as VTune
and ITAC, but with a steeper
learning curve

Accesses hardware counters to
provide hardware metrics; can
instrument MPI calls to trace
communication patterns
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Additional Resources

Software Carpentry Lessons on shell, source control,
Python, R, SQL
http://software-carpentry.org/

HPC Beginner’s Guide More in-depth introduction
http://tinyurl.com/korh48z

LLNL Training Great collection of tutorials and presentations
including: MPI, OpenMP, TAU, Python
http://tinyurl.com/3zxaw6

deal.II Video lectures introducing deal.II usage
http://www.math.tamu.edu/~bangerth/videos.html
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Additional Resources

NICS HPC Seminar videos, slides, and on campus at
Claxton; introduces HPC basics.
https://www.nics.tennessee.edu/hpc-seminar-series

MOOCs
1 High Performance Scientific Computing – Dr. Randall

LeVeque; covers OpenMP, MPI, Python, Fortran. Starts this
Friday!
https://www.coursera.org/course/scicomp

2 Heterogeneous Parallel Computing – Dr. Wen-mei Hwu;
covers common parallel algorithm patterns with CUDA
https://www.coursera.org/course/hetero
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Contacts at JICS

Dr. Glenn Brook – Director of AACE and PI of Beacon
Project
glenn-brook@tennessee.edu

Dr. Lonnie Crosby – Scientific Computing Group Lead and
XSEDE ERST
lcrosby1@utk.edu

Dr. Ryan Glasby – Computational Engineer and CFD Group
Lead
ryan-glasby@tennessee.edu
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Thank You

Shane Sawyer
shane-sawyer@tennessee.edu
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