
Introduction Programming Models Hardware Libraries Optimization Additional Resources

A Computational Mathematician’s Guide to
High Performance Computing

Shane Sawyer

Research Associate, Joint Institute for Computational Sciences
University of Tennessee, Knoxville

shane-sawyer@tennessee.edu

February 18, 2015

1 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Acknowledgements

Special thanks to colleagues who provided valuable feedback:
Dr. Vince Betro, Dr. Travis Thompson, Dr. Ryan Glasby,

and Dr. Taylor Erwin.

2 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Overview of talk

1 Introduction What is high performance computing

2 Programming Models Threads, Processes, Distributed/Shared

Memory

3 Hardware Multicore processors, memory hierarchies, accelerators

4 Libraries Existing libraries that simplify development and deliver

performance

5 Optimization When to optimize, available tools

6 Taking the Next Step Where to find additional resources

3 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Introduction

1 Introduction
Defining High Performance Computing

2 Programming Models
Nomenclature
Models
Examples

3 Hardware
CPUs
Memory

4 Libraries
blaze-lib
PETSc
deal.II

5 Optimization
Intel VTune
ITAC
TAU

6 Additional Resources

4 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Defining High Performance Computing

High performance computing is ubiquitous.

Titan supercomputer at ORNL.
Image courtesy of Oak Ridge

National Laboratory.

Broadly defined: it is a
collection of resources that
offer more performance than
desktops.

Computational tasks that
are too large
(memory/operations) for a
single resource.

5 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Defining High Performance Computing

Clusters vs. Supercomputers

Clusters
Collection of resources (servers, desktops, ...)
Interconnect (ethernet, InfiniBand, ...)
Commodity Linux distributions

Supercomputer
Collection of specialized resources. Typically higher density.
High-speed interconnects. Higher performance networking
topologies.
Customized compilers, tools, and OS.

6 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Defining High Performance Computing

Clusters vs. Supercomputers

Network diagram from ACCRE,
Vanderbilt University.

Cray’s Dragonfly topology.
Image credit: Timothy
Prickett Morgan , The

Register.

7 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Programming Models

1 Introduction
Defining High Performance Computing

2 Programming Models
Nomenclature
Models
Examples

3 Hardware
CPUs
Memory

4 Libraries
blaze-lib
PETSc
deal.II

5 Optimization
Intel VTune
ITAC
TAU

6 Additional Resources

8 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Nomenclature

Nomenclature

Threads A single stream of execution.

Processes Complete program with address space, code, I/O
handles, ...

Shared Memory Single pool of memory shared by resources.
Explicit protection.

Distributed Memory Memory is spread across resources.
Explicit exchange of information.

9 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Models

Models

1 OpenMP An API, compiler directives, and runtime engine for
shared memory, multithreading.

2 MPI A library and runtime for distributed memory parallel
programming. Explicit message exchange.

3 Hybrid Use OpenMP on node and MPI between nodes for
communication.

4 Heterogeneous Conventional resources with accelerators
(GPU, Xeon Phi, FPGA, ...)

10 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Examples

OpenMP Example

Dot product of two vectors.

1 #include <omp.h>

2 int main(void)

3 {

4 double *a, *b, dotp;

5 int i;

6 // ... initialize and allocate a and b

7
8
9 #pragma omp parallel for shared(a,b,N) \

10 private(i) reduction (+ : dotp)

11 for (i=0; i < N; ++i)

12 dotp += a[i]*b[i];

13
14
15 return 0;

16 }

11 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Examples

MPI Example

Dot product of two vectors.

1 #include <mpi.h>

2 int main(int argc , char* argv [])

3 {

4 double *a, *b, dotp , temp;

5 int i;

6 // initialize MPI

7 MPI_Init (&argc ,&argv);

8 MPI_Comm_rank(MPI_COMM_WORLD ,& my_rank);

9 MPI_Comm_size(MPI_COMM_WORLD ,&np);

10
11 // ... initialize and allocate a and b, determine start and end

12 dotp = temp = 0.;

13 for (i=START; i < END; ++i)

14 temp += a[i] * b[i];

15
16 MPI_Reduce (&temp ,&dotp ,1,MPI_DOUBLE ,MPI_SUM ,root ,MPI_COMM_WORLD);

17
18 MPI_Finalize ();

19 return 0;

20 }

12 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Hardware

1 Introduction
Defining High Performance Computing

2 Programming Models
Nomenclature
Models
Examples

3 Hardware
CPUs
Memory

4 Libraries
blaze-lib
PETSc
deal.II

5 Optimization
Intel VTune
ITAC
TAU

6 Additional Resources

13 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

CPUs

Multicore Processors are everywhere.

Quad-core AMD Opteron processor.
Image credit: American Micro

Devices, Inc.

”The Free Lunch is Over” –
Herb Sutter.

Proliferation of multicore
processors.

Algorithms pushed towards
parallelization.

14 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

CPUs

Granularity

Socket The physical packaging of cores with cache and
interconnect.

Core A complete processing element.

SIMD Registers and execution units that allow one operation
performed on multiple data in one tick.

15 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Memory

NUMA and the Latency Hierarchy

NUMA – Non-Uniform Memory Access

Image credit: Jon Stokes, ArsTechnica.

16 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Memory

NUMA and the Latency Hierarchy

Memory Hierarchy

1 Registers – 1 cycle

2 Cache – L1 (4 cycles) → L2 (10 cycles) → L3 (40-75
cycles)

3 RAM – 100ns

4 Disk – 2ms

17 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Memory

Data Locality

Goal: Maintain high FP intensity

Algorithms: Reuse data in cache

Reflected in many modern linear algebra packages

Example: create a tiling of matrices for multiplication.

18 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Memory

Matrix Tiling

Image credit: Nvidia.
Image credit: Nvidia.

19 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Libraries

1 Introduction
Defining High Performance Computing

2 Programming Models
Nomenclature
Models
Examples

3 Hardware
CPUs
Memory

4 Libraries
blaze-lib
PETSc
deal.II

5 Optimization
Intel VTune
ITAC
TAU

6 Additional Resources

20 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Libraries for Computational Mathematics

Parallel programming is challenging – changing technology,
effort spent on low-level details

Using libraries allows quicker development time, less
debugging, abstracts communication details, lets application
writers focus on their problem

Plethora of excellent libraries for computational mathematics:
linear algebra, nonlinear solvers, graph partitioning, PDEs, ...

21 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Linear Algebra

Modern libraries take advantage of hardware advances:
ATLAS, Intel Math Kernel Library (MKL), PLASMA (ICL),
blaze-lib

Libraries for Heterogenous systems:

Intel Xeon Phi: MKL (with automatic offload support),
MAGMA-MIC (ICL)
Nvidia GPU: CUBLAS, MAGMA (ICL)

Parallel libraries: PETSc, Trilinos

PDEs: deal.II, FEniCS, libMesh

22 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

blaze-lib

blaze-lib: CG Example

100 const size_t NN(N*N);
101
102 blaze:: CompressedMatrix <double ,rowMajor > A(NN, NN);
103 blaze:: DynamicVector <double ,columnVector > x(NN, 1.0), b(NN, 0.0),
104 r(NN), p(NN), Ap(NN);
105 double alpha , beta , delta;
106
107 // ... Initializing the sparse matrix A
108
109 // Performing the CG algorithm
110 r = b - A * x;
111 p = r;
112 delta = (r,r);
113
114 for(size_t iteration =0UL; iteration <iterations; ++ iteration)
115 {
116 Ap = A * p;
117 alpha = delta / (p,Ap);
118 x += alpha * p;
119 r -= alpha * Ap;
120 beta = (r,r);
121 if(std::sqrt(beta) < 1E-8) break;
122 p = r + (beta / delta) * p;
123 delta = beta;
124 }

23 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

PETSc

PETSc

Library for large-scale scientific computation

Large collection of parallel functions for linear solvers,
nonlinear solvers, ODE integrators

Abstracts communication details from user; focus on solving
the problem

Well documented; large collection of online examples/tutorials

24 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

PETSc

PETSc: Parallel Linear Solve Example

1 #include <petscksp.h>
2 PETSC_EXTERN PetscErrorCode PCCreate_Jacobi(PC);
3
4 int main(int argc ,char **args)
5 {
6 Vec x,b,u; /* approx solution , RHS , exact solution */
7 Mat A; /* linear system matrix */
8 KSP ksp; /* linear solver context */
9 PetscReal norm; /* norm of solution error */

10 PetscInt i,j,Ii,J,Istart ,Iend ,m = 8,n = 7,its;
11 PetscScalar v,one = 1.0, neg_one = -1.0;
12 PC pc; /* preconditioner context */
13
14 PetscInitialize (&argc ,&args ,(char*)0,help);
15 PetscOptionsGetInt(NULL ,"-m" ,&m,NULL);
16 PetscOptionsGetInt(NULL ,"-n" ,&n,NULL);
17
18 MatCreate(PETSC_COMM_WORLD ,&A);
19 MatSetSizes(A,PETSC_DECIDE ,PETSC_DECIDE ,m*n,m*n);
20 MatSetFromOptions(A);
21 MatSetUp(A);

25 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

PETSc

PETSc: Parallel Linear Solve Example

22 MatGetOwnershipRange(A,&Istart ,&Iend);
23
24 for (Ii=Istart; Ii<Iend; Ii++) {
25 v = -1.0; i = Ii/n; j = Ii - i*n;
26 if (i>0) {J = Ii - n; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES);}
27 if (i<m-1) {J = Ii + n; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES);}
28 if (j>0) {J = Ii - 1; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES);}
29 if (j<n-1) {J = Ii + 1; MatSetValues(A,1,&Ii ,1,&J,&v,INSERT_VALUES);}
30 v = 4.0; MatSetValues(A,1,&Ii ,1,&Ii ,&v,INSERT_VALUES);
31 }
32
33 MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
34 MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
35
36 VecCreate(PETSC_COMM_WORLD ,&u);
37 VecSetSizes(u,PETSC_DECIDE ,m*n);
38 VecSetFromOptions(u);
39 VecDuplicate(u,&b);
40 VecDuplicate(b,&x);
41 VecSet(u,one);
42 MatMult(A,u,b);

26 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

PETSc

PETSc: Parallel Linear Solve Example

43 KSPCreate(PETSC_COMM_WORLD ,&ksp);
44 KSPSetOperators(ksp ,A,A);
45 PCRegister("ourjacobi",PCCreate_Jacobi);
46 KSPGetPC(ksp ,&pc);
47 PCSetType(pc,"ourjacobi");
48 KSPSetFromOptions(ksp);
49
50 KSPSolve(ksp ,b,x);
51
52 VecAXPY(x,neg_one ,u);
53 VecNorm(x,NORM_2 ,&norm);
54 KSPGetIterationNumber(ksp ,&its);
55 PetscPrintf(PETSC_COMM_WORLD ,"Norm of error %g iterations %D\n",
56 (double)norm ,its);
57
58 KSPDestroy (&ksp);
59 VecDestroy (&u); VecDestroy (&x);
60 VecDestroy (&b); MatDestroy (&A);
61 PetscFinalize ();
62 return 0;
63 }

27 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

deal.II

deal.II

Image Credit: Dr. Wolfgang
Bangerth.

Modern C++ based library for
building applications to solve
PDEs with finite elements

Support for arbitrary degree,
adaptive refinement, 1/2/3
spatial dimensions

Interfaces to a variety of
libraries: ARPACK, PETSc,
Trilinos, SLEPc, MPI, p4est,
METIS, ...

Well documented code; greater
than 50 tutorial programs;
online collection of video
lectures

28 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Optimization

1 Introduction
Defining High Performance Computing

2 Programming Models
Nomenclature
Models
Examples

3 Hardware
CPUs
Memory

4 Libraries
blaze-lib
PETSc
deal.II

5 Optimization
Intel VTune
ITAC
TAU

6 Additional Resources

29 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Optimization

Getting the most performance out of available hardware;
being able to scale efficiently to larger resources

Libraries are typically optimized; application code can be the
bottleneck

“Premature optimization is the root of all evil” – Donald
Knuth; measure code performance and look for critical
sections

Several available tools to provide metrics on performance
including CPU, cache utilization, memory bandwidth,
communication, ...

30 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Intel VTune

Intel VTune

Image Credit: Intel.

Provides CPU metrics, cache
misses, thread synchronization
information, ...

Identifies which functions use
the most CPU time

31 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

ITAC

Intel Trace Analyzer and Collector

Image Credit: Intel.

Collects and reports on MPI
communication patterns

Aids in finding bottlenecks and
load balancing issues

32 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

TAU

Tuning and Analysis Utilities

Image Credit: PRACE.

Open source resource providing
similar information as VTune
and ITAC, but with a steeper
learning curve

Accesses hardware counters to
provide hardware metrics; can
instrument MPI calls to trace
communication patterns

33 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Additional Resources

1 Introduction
Defining High Performance Computing

2 Programming Models
Nomenclature
Models
Examples

3 Hardware
CPUs
Memory

4 Libraries
blaze-lib
PETSc
deal.II

5 Optimization
Intel VTune
ITAC
TAU

6 Additional Resources

34 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Additional Resources

Software Carpentry Lessons on shell, source control,
Python, R, SQL
http://software-carpentry.org/

HPC Beginner’s Guide More in-depth introduction
http://tinyurl.com/korh48z

LLNL Training Great collection of tutorials and presentations
including: MPI, OpenMP, TAU, Python
http://tinyurl.com/3zxaw6

deal.II Video lectures introducing deal.II usage
http://www.math.tamu.edu/~bangerth/videos.html

35 / 38

http://software-carpentry.org/
http://tinyurl.com/korh48z
http://tinyurl.com/3zxaw6
http://www.math.tamu.edu/~bangerth/videos.html

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Additional Resources

NICS HPC Seminar videos, slides, and on campus at
Claxton; introduces HPC basics.
https://www.nics.tennessee.edu/hpc-seminar-series

MOOCs
1 High Performance Scientific Computing – Dr. Randall

LeVeque; covers OpenMP, MPI, Python, Fortran. Starts this
Friday!
https://www.coursera.org/course/scicomp

2 Heterogeneous Parallel Computing – Dr. Wen-mei Hwu;
covers common parallel algorithm patterns with CUDA
https://www.coursera.org/course/hetero

36 / 38

https://www.nics.tennessee.edu/hpc-seminar-series
https://www.coursera.org/course/scicomp
https://www.coursera.org/course/hetero

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Contacts at JICS

Dr. Glenn Brook – Director of AACE and PI of Beacon
Project
glenn-brook@tennessee.edu

Dr. Lonnie Crosby – Scientific Computing Group Lead and
XSEDE ERST
lcrosby1@utk.edu

Dr. Ryan Glasby – Computational Engineer and CFD Group
Lead
ryan-glasby@tennessee.edu

37 / 38

Introduction Programming Models Hardware Libraries Optimization Additional Resources

Thank You

Shane Sawyer
shane-sawyer@tennessee.edu

38 / 38

	Introduction
	Defining High Performance Computing

	Programming Models
	Nomenclature
	Models
	Examples

	Hardware
	CPUs
	Memory

	Libraries
	blaze-lib
	PETSc
	deal.II

	Optimization
	Intel VTune
	ITAC
	TAU

	Additional Resources

